Caulkmate Applicator

Caulkmate Pty Ltd

Chemwatch: **5343-06** Version No: **2.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 1

Issue Date: 11/02/2019 Print Date: 12/02/2019 L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Caulkmate Applicator
Synonyms	Not Available
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Details of the supplier of the safety data sheet

Registered company name	Caulkmate Pty Ltd	
Address	22/872 Canterbury Rd. Roselands NSW Australia	
Telephone	+61 2 8021 3517	
Fax	Not Available	
Website	www.caulkmate.com.au	
Email	Not Available	

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	+61 2 8021 3517 (Mon-Fri 8am to 5pm; Sat 8.30am to 12.30pm)
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max	
Flammability	1		
Toxicity	0		0 = Minimum
Body Contact	1		1 = Low 2 = Moderate
Reactivity	1		3 = High
Chronic	0		4 = Extreme

Poisons Schedule	Not Applicable
Classification	Not Applicable

Label elements

Hazard pictogram(s)	Not Applicable		
SIGNAL WORD	NOT APPLICABLE		

Hazard statement(s)

Not Applicable

Precautionary statement(s) Prevention

Not Applicable

Precautionary statement(s) Response

Not Applicable

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

Chemwatch: 5343-06 Page 2 of 10 Issue Date: 11/02/2019

Caulkmate Applicator

Version No: 2.1.1.1 Print Date: 12/02/2019

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
25038-36-2	>60	ethylene/ propylene/ ethylidenenorbornene polymer	

SECTION 4 FIRST AID MEASURES

Description of first aid measures

If this product comes in contact with eyes:

▶ Wash out immediately with water

- If irritation continues, seek medical attention.
- ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Eye Contact For THERMAL burns:

- ▶ Do NOT remove contact lens
- Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye.
- ► Seek urgent medical assistance, or transport to hospital.

If skin or hair contact occurs:

- Flush skin and hair with running water (and soap if available).
- ▶ Seek medical attention in event of irritation.

In case of burns:

- ▶ Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth.
- DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this can cause further injury.
- ▶ DO NOT break blister or remove solidified material.
- Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain.
- For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth.
- ► DO NOT apply ointments, oils, butter, etc. to a burn under any circuit
- ▶ Water may be given in small quantities if the person is conscious.
- Alcohol is not to be given under any circumstances.
- ▶ Reassure.
- Treat for shock by keeping the person warm and in a lying position.
- ▶ Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient.

For thermal burns:

- ► Decontaminate area around burn.
- ▶ Consider the use of cold packs and topical antibiotics.

For first-degree burns (affecting top layer of skin)

- ▶ Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides
- Use compresses if running water is not available.
- Cover with sterile non-adhesive bandage or clean cloth.
- Do NOT apply butter or ointments; this may cause infection.
- ▶ Give over-the counter pain relievers if pain increases or swelling, redness, fever occur.

Skin Contact For second-degree burns (affecting top two layers of skin)

- Cool the burn by immerse in cold running water for 10-15 minutes.
- Use compresses if running water is not available.
- Do NOT apply ice as this may lower body temperature and cause further damage.
- Do NOT break blisters or apply butter or ointments; this may cause infection.
- Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape.

To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort):

- ▶ Lay the person flat.
- ▶ Elevate feet about 12 inches.
- ▶ Elevate burn area above heart level, if possible.
- Cover the person with coat or blanket.
- Seek medical assistance.

For third-degree burns

Seek immediate medical or emergency assistance.

- Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound.
- Separate burned toes and fingers with dry, sterile dressings.
- ▶ Do not soak burn in water or apply ointments or butter; this may cause infection.
- To prevent shock see above.
- For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway.
- Have a person with a facial burn sit up.
- ▶ Check pulse and breathing to monitor for shock until emergency help arrives.

Inhalation

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

Ingestion

- Immediately give a glass of water
- ▶ First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically

SECTION 5 FIREFIGHTING MEASURES

Version No: 2.1.1.1

Caulkmate Applicator

Print Date: 12/02/2019

Extinguishing media

- ▶ Do NOT direct a solid stream of water or foam into burning molten material; this may cause spattering and spread the fire.
- Foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions. Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations or fine dust (420 micron or less) may burn rapidly and fiercely if ignited - particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC). When processed with flammable liquidisy apors/mistis, ignitable (thybrid) mixtures may be formed with combustible dusts; lamble mixtures will be lower than the individual LELs for the vapors/mists or dusts. A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people. Usually the initial or primary explosion altes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant, if the shock wave from the primary explos	Special hazards arising from	the substrate or mixture			
Alent Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevert, by any means variables, spillage from entering drains or water courses. Prevert, by any means variables, spillage from entering drains or water courses. Do Not approach containers suspected to be hot. Do Not approach containers suspected to be hot. Do Not approach containers suspected to be hot. Cord fire exposed containers with water spray from a protected location. If ale to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and /or dust explosions. Organic powders when finely divided over a range of concentrations regardless of particular is zero stape and suspended in air or some other oxidizing medium may form explosive dustair mixture and result in a fire or dust explosion (including secondary explosions). Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, it. Binan or spart, will cuse their or explosion. Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, it. Binan or spart, will cuse their or explosion in the source of including the source of ignition, it. Binan or spart, will cuse their or explosive intentile. Avoid generating dust, particular plant, with continued to the particular plant, it has sand vapours, dusts in the form of a doud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (LEL) are applicable to dust douds a thigh temperature. In the sand way a	Fire Incompatibility	► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result			
Fire Fighting Fire F	Advice for firefighters				
circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions. Porganic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited - particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC) When processed with flammable liquids/vapors/mists, ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the june dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists of dusts. In dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of dusts. In all pu	Fire Fighting	 Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. 			
Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. NOTE: Burns with intense heat. Produces melting, flowing, burning liquid and dense acrid black smoke. May emit corrosive furnes.	Fire/Explosion Hazard	 Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn apidly and finercely if ignited - particles exposeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. In the same way as gases and vapours, dusts in the form of a cloud are only ignitiable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (LEL) are applicable to dust clouds but only the LEL is often called the "Minimum Explosible Concentration", MEC). When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts. A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people. Usually the initial or primary explosions takes place in a confined space such as plant or machinery, and can be of sufficient forc			
CARE: Contamination of heated / molten liquid with water may cause violent steam explosion, with scattering of hot contents.		· ·			

SECTION 6 ACCIDENTAL RELEASE MEASURES

HAZCHEM Not Applicable

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

Methods and material for containment and cleaning up

- ► Clean up all spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
 Use dry clean up procedures and avoid generating dust.
- **Minor Spills**
- ► Sweep up, shovel up or ► Vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- ► Place spilled material in clean, dry, sealable, labelled container.

Chemwatch: 5343-06 Page 4 of 10 Issue Date: 11/02/2019 Version No: 2.1.1.1 Print Date: 12/02/2019

Caulkmate Applicator

Moderate hazard

- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.

Control personal contact by wearing protective clothing.

- Major Spills
- Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible.

 - IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
 - ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
 - If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ▶ The greatest potential for injury caused by molten materials occurs during purging of machinery (moulders, extruders etc.)
- It is essential that workers in the immediate area of the machinery wear eye and skin protection (such as full face, safety glasses, heat resistant gloves, overalls and safety boots) as protection from thermal burns.
- Fumes or vapours emitted from hot melted materials, during converting operations, may condense on overhead metal surfaces or exhaust ducts. The condensate may contain substances which are irritating or toxic. Avoid contact of that material with the skin. Wear rubber or other impermeable gloves when cleaning contaminated areas.
- Avoid process temperatures above decomposition temperatures. Overheating may occur at excessively high cylinder heats, overworking of the melt by wrong screw configuration, or by long dwell time in the machine. Under such conditions, thermal emissions and heat-degradation products might, without proper ventilation, reach hazardous concentrations in the converting area. Hot purgings should be collected only as thin flat strands to allow for rapid cooling. Hot purgings should be cooled by quenching in water in a well-ventilated area.
- Avoid all personal contact, including inhalation
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area
- Prevent concentration in hollows and sumps
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- ▶ Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- ► Establish good housekeeping practices.
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers $\overline{1/32}$ in. (0.8 mm)thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- ▶ Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit

Other information

Safe handling

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities

- ▶ Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams)
- Figure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities

Conditions for safe storage, including any incompatibilities

Suitable container

- ▶ Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

EPDM rubbers exhibits unsatisfactory compatibility with most oils, gasoline, kerosene, aromatic and aliphatic hydrocarbons, halogenated solvents, and concentrated acids

Abnormally high temperatures, particularly in the presence of oxygen, can lead to degradation. The main decomposition products are anticipated to be carbon monoxide, carbon dioxide, organic fragments, and their oxidation products. Laboratory tests indicate that at a temperature of 170 deg C (338 deg

Caulkmate Applicator

F), an exothermic reaction will start in approximately 15 minutes. In the absence of oxygen, the product is stable to much higher temperatures, but temperatures greater than 200 deg C (392 deg F) should be avoided to prevent thermal decomposition.

The quality of EPDM products may be affected by exposure to artificial or natural light that contains ultraviolet (UV) radiation. These polymers should be stored indoors in their original packaging and out of direct sunlight. If it is necessary to remove part of the contents of the package, protect the remaining product with a light-blocking material. EPDM grades are best stored under low humidity conditions, away from direct sunlight and other sources of UV radiation, and at temperatures between 10 and 21 deg C (50 and 70 deg F). Extended storage and/or exposure to a source of UV radiation may cause the polymer to cross-link and form gels. When in doubt, Mooney viscosity measurement is a good indicator of storage stability.

EPDM rubbers exhibit satisfactory compatibility with fireproof hydraulic fluids, ketones, hot and cold water, and alkalis ...

The main properties of EPDM are its outstanding heat, ozone, and weather resistance. The resistance to polar substances and steam are also good. It has excellent electrical insulating properties. It has good resistance to ketones, ordinary diluted acids, and alkalies.

EPDM can be compounded to meet specific properties to a limit, depending first on the EPDM polymers available, then the processing and curing method(s) employed. EPDMs are available in a range of molecular weights (indicated in terms of Mooney viscosity ML(1+4) at 125 deg C), varying levels of ethylene, third monomer, and oil content.

Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
Caulkmate Applicator	Not Available	Not Available	Not Available	Not Available
Ingredient	Original IDLH		Revised IDLH	

MATERIAL DATA

Exposure controls

EPDM polymers may evolve low-molecular weight polymer fragments or other volatiles. If ventilation in the mixer is poor, combustible vapour could accumulate in the air space of an internal mixer during mastication or blending. The possibility of fire exists if ventilation in the mixer is poor and higher than recommended temperatures are reached in the mixer. The potential for a fire is minimized by maintaining mixing temperatures below 199 deg C (390 deg F), by providing good ventilation in the mixer and the processing area, and by maintaining good static control.

Warehouse Stacking: Various available EPDM packaging options have different stacking requirements: Flexible Intermediate Bulk Containers (FIBCs) can be stacked only one high. The free flowing pellet products, packaged 40 bags to a pallet and stretch wrapped, also can only be stacked one high. Bulk boxes of semi-crystalline EPDM can be stacked three high. Amorphous products (or palletized product that is partially compacted) packaged in boxes can be stacked two high.

The pellet versions of EPDM products require slightly higher fill factors at the beginning of the mixing cycle, as the effective bulk density of the compound is lower vs. bale rubber. Fill factors in the range of 75-80 percent are found to be suitable for single pass mixing. Ram pressure is also important, as efficient packing of the material is necessary in the mixing chamber at the beginning of the mixing cycle. A 5 bar ram pressure is generally found to be suitable. The mixer body temperature should be 70 C (158 F) or higher to be above the low temperature melting peak (typically 50-60C [122-140F]) for semi-crystalline polymer.

Loading RPM should be low, followed by high RPM for the actual mix cycle. Upside down mixing is typically recommended. Faster mixing is possible with the pelletized EPDM.

Many compounding ingredients and techniques (e.g., mixing time, temperature) are employed during conversion of EPDM to end-products. These may alter the toxicity as well as the handling precautions for the product during intermediate stages or in its finished form. Even when no danger from individual compounding ingredients exists, there is no assurance that a combination of these ingredients will be equally non-hazardous. Consequently, it is the responsibility of each user to determine whether techniques, processes, and additives comply with government regulations and are safe with respect to both employees and customers.

Compounding ingredients, including peroxides, solvents, talc, carbon black, and lead-based curing agents used with EPDM to prepare finished products may present hazards in handling and use. Before proceeding with any. compounding work, always consult and follow all label directions, handling precautions.

For molten materials:

Appropriate engineering controls

Provide mechanical ventilation; in general such ventilation should be provided at compounding/ converting areas and at fabricating/ filling work stations where the material is heated. Local exhaust ventilation should be used over and in the vicinity of machinery involved in handling the molten material. Keep dry!!

Processing temperatures may be well above boiling point of water, so wet or damp material may cause a serious steam explosion if used in unvented equipment.

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)

Chemwatch: 5343-06 Page 6 of 10 Issue Date: 11/02/2019
Version No: 2.1.1.1 Print Date: 12/02/2019

Caulkmate Applicator

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

1-2.5 m/s (200-500 f/min.)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)

2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

Safety glasses with side shields.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Chemical goggles

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- ▶ When handling hot materials wear heat resistant, elbow length gloves.
- ▶ Rubber gloves are not recommended when handling hot objects, materials
- ▶ Protective gloves eg. Leather gloves or gloves with Leather facing

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- ► nitrile rubber.
- ► butyl rubber.
- fluorocaoutchouc.
- polyvinyl chloride.

Gloves should be examined for wear and/ or degradation constantly.

Body protection

Hands/feet protection

See Other protection below

Version No: 2.1.1.1

Caulkmate Applicator

Issue Date: 11/02/2019 Print Date: 12/02/2019

Other protection

- ▶ When handling hot or molten liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.
- ▶ Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapour exposure.
- ► CAUTION: Vapours may be irritating.
- Overalls.
 - ► P.V.C. apron.
- Barrier cream.
- ► Skin cleansing cream.
- ▶ Eve wash unit.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A P1 Air-line*	-	A PAPR-P1
up to 50 x ES	Air-line**	A P2	A PAPR-P2
up to 100 x ES	-	A P3	-
		Air-line*	-
100+ x ES	-	Air-line**	A PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

For molten materials:

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- ▶ Use approved positive flow mask if significant quantities of dust becomes airborne.
- ▶ Try to avoid creating dust conditions.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Black solid; insoluble in water.		
Physical state	Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

Chemwatch: **5343-06**Version No: **2.1.1.1**

Page 8 of 10

Caulkmate Applicator

Issue Date: 11/02/2019 Print Date: 12/02/2019

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhaled

Processing for an overly long time or processing at overly high temperatures may cause generation and release of highly irritating vapours, which irritate eyes, nose, throat, causing red itching eyes, coughing, sore throat.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

- Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapour exposure.
- ► CAUTION: Vapours may be irritating

Ingestion

The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

High molecular weight material; on single acute exposure would be expected to pass through gastrointestinal tract with little change / absorption. Occasionally accumulation of the solid material within the alimentary tract may result in formation of a bezoar (concretion), producing discomfort.

Skin Contact

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Molten material is capable of causing burns.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

The material contains a substantial proportion of a polymer considered to be of low concern (PLC). The trend towards production of lower molecular weight

polymers (thus reducing the required level of solvent use and creating a more "environmentally-friendly" material) has brought with it the need to define PLCs as those

having molecular weights of between 1000 and 10000 and containing less than 10% of the molecules with molecular weight below 500 and less than 25% of the molecules with a molecular weight below 1000. These may contain unlimited low concern functional groups or moderate concern reactive functional groups with a combined functional group equivalent weight (FGEW, a concept developed by the US EPA describing whether the reactive functional group is sufficiently diluted by polymeric material) of a 1000 or more (provided no high concern groups are present) or high concern reactive functional groups with a FGEW of 5000 or more (FGEW includes moderate concern groups if present).

Chronic

having molecular weights exceeding 10000 (without restriction on reactive groups). inhalation of polymers with molecular weights > 70,000 Da has been linked with irreversible lung damage due to lung overloading and impaired clearance of particles from the lung, particularly following repeated exposure. If the polymer is inhaled at low levels and/or infrequently, it is assumed that it will be cleared from the lungs.

Reactive functional groups are in turn classified as being of low, moderate or high concern Classification of the polymer as a PLC, in accordance with established criteria, does not mean that hazards will not be associated with the polymer (during its import, manufacture, use, storage, handling or disposal). The polymer may, for example, contain a large number of particles in the respirable range, a hazard which may need to assessed in the health and safety risk assessment. Similarly a polymer with low concern reactive may be released into the environment in large quantities and produce an environmental hazard.

Whilst it is generally accepted that polymers with a molecular weight exceeding 1000 are unlikely to pass through biological membranes, oligomers with lower molecular weight and specifically, those with a molecular weight below 500, may. Estimations based on a "highly" dispersed polymer population (polydispersity = 10) suggests that the molecular weight of the polymer carrying a reactive group of high concern must be 5000 to be considered a PLC; similarly a polymer of approximate molecular weight 1000 could contain no more than one reactive group of moderate concern (for two moderate concern groups, the molecular weight uplace).

Caulkmate Applicator	

Not Available

IRRITATION

Not Available

ethylene/ propylene/ ethylidenenorbornene polymer

TOXICITY IRRITATION

Not Available Not Available

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Acute Oral Toxicity

Oral LD50 has not been determined for EPDM rubbers. Based on tests conducted on similar products, it is understood that oral toxicity may be very low, on a single dose basis.

ETHYLENE/ PROPYLENE/ T

ETHYLENE/ PROPYLENE/ ETHYLIDENENORBORNENE POLYMER

Inhalation Toxicity

The polymer may contain contains traces of ethylidene norbornene (ENB) which may be released during storage and processing. ENB is moderately toxic with an LD50 of 732 ppm/4H (inhalation, mouse). Under normal storage and processing conditions with adequate ventilation and exhaust, the ACGIH TLV-C for ENB should not be reached

Exposure to ENB vapours may cause irritation of the respiratory tract, with symptoms such as nasal discomfort and discharge, and coughing possibly accompanied by chest pains, headache, or dizziness. Eye contact with ENB vapour may be irritating.

Fumes may evolve during hot processing of EPDM may irritate eyes, nose, and throat.

Chemwatch: 5343-06 Page 9 of 10 Issue Date: 11/02/2019 Version No: 2.1.1.1 Print Date: 12/02/2019

Caulkmate Applicator

Polymer dust may cause irritation. No significant acute toxicological data identified in literature search.			
Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

X - Data either not available or does not fill the criteria for classification Legend: Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

SOURCE
Not Available
SOURCE
Not Available
1 1

(QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO Not Applicable	
HAZCHEM	Not Applicable	

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Version No: 2.1.1.1

Caulkmate Applicator

Issue Date: **11/02/2019**Print Date: **12/02/2019**

Safety, health and environmental regulations / legislation specific for the substance or mixture

ETHYLENE/ PROPYLENE/ ETHYLIDENENORBORNENE POLYMER(25038-36-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (ethylene/ propylene/ ethylidenenorbomene polymer)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (ethylene/ propylene/ ethylidenenorbomene polymer)
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Legend:	Yes = All ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	11/02/2019
Initial Date	11/02/2019

SDS Version Summary

Version	Issue Date	Sections Updated
2.1.1.1	11/02/2019	Appearance, Use

Other information

Ingredients with multiple cas numbers

Name	CAS No
ethylene/ propylene/ ethylidenenorbornene polymer	25038-36-2, 1135584-96-1

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

 ${\sf PC-TWA: Permissible \ Concentration-Time \ Weighted \ Average}$

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.